Introduction

Lesson 48/77 | Study Time: Min


Machine Learning (ML) is a subfield of artificial intelligence (AI) that focuses on the development of algorithms and models that enable computers to learn from and make predictions or decisions based on data. Instead of being explicitly programmed to perform specific tasks, ML algorithms learn patterns and relationships from data, allowing them to improve their performance over time without human intervention. ML has a wide range of applications across various domains and industries.

UE Campus

UE Campus

Product Designer
Profile

Class Sessions

1- Introduction 2- Import and export data sets and create data frames within R and Python 3- Sort, merge, aggregate and append data sets. 4- Use measures of central tendency to summarize data and assess symmetry and variation. 5- Differentiate between variable types and measurement scales. 6- Calculate appropriate measures of central tendency based on variable type. 7- Compare variation in two datasets using coefficient of variation. 8- Assess symmetry of data using measures of skewness. 9- Present and summarize distributions of data and relationships between variables graphically. 10- Select appropriate graph to present data 11- Assess distribution using Box-Plot and Histogram. 12- Visualize bivariate relationships using scatter-plots. 13- Present time-series data using motion charts. 14- Introduction 15- Statistical Distributions: Evaluate and analyze standard discrete and continuous distributions, calculate probabilities, and fit distributions to observed. 16- Hypothesis Testing: Formulate research hypotheses, assess appropriate statistical tests, and perform hypothesis testing using R and Python programs. 17- ANOVA/ANCOVA: Analyze the concept of variance, define variables and factors, evaluate sources of variation, and perform analysis using R and Python. 18- Introduction 19- Fundamentals of Predictive Modelling. 20- Carry out parameter testing and evaluation. 21- Validate assumptions in multiple linear regression. 22- Validate models via data partitioning and cross-validation. 23- Introduction 24- Time Series Analysis: Learn concepts, stationarity, ARIMA models, and panel data regression. 25- Introduction 26- Unsupervised Multivariate Methods. 27- Principal Component Analysis (PCA) and its derivations. 28- Hierarchical and non-hierarchical cluster analysis. 29- Panel data regression. 30- Data reduction. 31- Scoring models 32- Multi-collinearity resolution 33- Brand perception mapping 34- Cluster solution interpretation 35- Use of clusters for business strategies 36- Introduction 37- Advance Predictive Modeling 38- Evaluating when to use binary logistic regression correctly. 39- Developing realistic models using functions in R and Python. 40- Interpreting output of global testing using linear regression testing to assess results. 41- Performing out of sample validation to test predictive quality of the model Developing applications of multinomial logistic regression and ordinal. 42- Selecting the appropriate method for modeling categorical variables. 43- Developing models for nominal and ordinal scaled dependent variables in R and Python correctly Developing generalized linear models . 44- Evaluating the concept of generalized linear models. 45- Applying the Poisson regression model and negative binomial regression to count data correctly. 46- Modeling 'time to event' variables using Cox regression. 47- Introduction 48- Classification methods: Evaluate different methods of classification and their performance in order to design optimum classification rules. 49- Naïve Bayes: Understand and appraise the Naïve Bayes classification method. 50- Support Vector Machine algorithm: Understand and appraise the Support Vector Machine algorithm for classification. 51- Decision tree and random forest algorithms: Apply decision trees and random forest algorithms to classification and regression problems. 52- Bootstrapping and bagging: Analyze the concepts of bootstrapping and bagging in the context of decision trees and random forest algorithms. 53- Market Baskets: Analyze transaction data to identify possible associations and derive baskets of associated products. 54- Neural networks: Apply neural networks to classification problems in domains such as speech recognition, image recognition, and document categorization. 55- Introduction 56- Text mining: Concepts and techniques used in analyzing unstructured data. 57- Sentiment analysis: Identifying positive, negative, or neutral tone in Twitter data. 58- SHINY package: Building interpretable dashboards and hosting standalone applications for data analysis. 59- Hadoop framework: Core concepts and applications in Big Data Analytics. 60- Artificial intelligence: Building simple AI models using machine learning algorithms for business analysis. 61- SQL programming: Core SQL for data analytics and uncovering insights in underutilized data. 62- Introduction 63- Transformation and key technologies: Analyze technologies driving digital transformation and assess the challenges of implementing it successfully. 64- Strategic impact of Big Data and Artificial Intelligence: Evaluate theories of strategy and their application to the digital economy, and analyze. 65- Theories of innovation: Appraise theories of disruptive and incremental change and evaluate the challenges of promoting and implementing innovation. 66- Ethics practices and Data Science: Assess the role of codes of ethics in organizations and evaluate the importance of reporting. 67- Introduction 68- Introduction and Background: Provide an overview of the situation, identify the organization, core business, and initial problem/opportunity. 69- Consultancy Process: Describe the process of consultancy development, including literature review, contracting with the client, research methods. 70- Literature Review: Define key concepts and theories, present models/frameworks, and critically analyze and evaluate literature. 71- Contracting with the Client: Identify client wants/needs, define consultant-client relationship, and articulate value exchange principles. 72- Research Methods: Identify and evaluate selected research methods for investigating problems/opportunity and collecting data. 73- Planning and Implementation: Demonstrate skills as a designer and implementer of an effective consulting initiative, provide evidence of ability. 74- Principal Findings and Recommendations: Critically analyze data collected from consultancy process, translate into compact and informative package. 75- Understand how to apply solutions to organisational change. 76- Conclusion and Reflection: Provide overall conclusion to consultancy project, reflect on what was learned about consultancy, managing the consulting. 77- Handle and manage multiple datasets within R and Python environments.
noreply@uecampus.com
-->