
Building Neural Networks 
for Image Classification
Learn how to harness the power of neural networks for image classification. 
We'll explore CNN architecture and implement models using TensorFlow.

by S MM



What is Image Classification?
Security Systems
Face recognition software identifies individuals from security footage. Used in 
airports, stadiums, and businesses.

Medical Diagnostics
AI systems detect abnormalities in medical images. Can identify tumors, 
fractures, and other conditions.

Consumer Applications
Mobile apps identify plants, animals, landmarks, and products. Makes 
information accessible instantly.



Convolutional Neural Networks (CNNs)

Convolutional Layers
Extract features using filters that scan 
across the image. Detect edges, 
textures, and patterns.

Pooling Layers
Reduce dimensions while preserving 
important information. Makes 
computation more efficient.

Fully Connected Layers
Combine features for final 
classification. Connect all neurons 
between layers.



Popular Image Datasets

MNIST

70,000 handwritten digits (0-9)

28×28 pixel grayscale images

Standard benchmark for beginners

CIFAR-10

60,000 color images in 10 classes

32×32 pixel RGB images

Includes animals, vehicles, and objects

Custom Datasets

Created for specific applications

Requires careful collection and labeling

Can use data augmentation to expand



TensorFlow Workflow: Load & 
Preprocess

from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = 
mnist.load_data()
    

Import Data

train_images = train_images / 255.0
test_images = test_images / 255.0
    

Normalize Pixel Values

Scale pixel values to range [0,1] for better training performance.

train_images = train_images.reshape(-1, 28, 28, 1)
test_images = test_images.reshape(-1, 28, 28, 1)
    

Reshape for CNN Input



TensorFlow Workflow: Define & Train

model = Sequential([
  Conv2D(32, (3,3), activation='relu', 
         input_shape=(28,28,1)),
  MaxPooling2D((2,2)),
  Conv2D(64, (3,3), activation='relu'),
  MaxPooling2D((2,2)),
  Flatten(),
  Dense(64, activation='relu'),
  Dense(10, activation='softmax')
])
    

Define Model

model.compile(
  optimizer='adam',
  loss='sparse_categorical_crossentropy',
  metrics=['accuracy']
)

history = model.fit(
  train_images, 
  train_labels, 
  epochs=10,
  validation_data=(test_images, test_labels)
)
    

Compile & Train



TensorFlow Workflow: Evaluate

test_loss, test_acc = 
model.evaluate(test_images, 
test_labels)
print(f"Test accuracy: 
{test_acc:.4f}")
    

1 Test Accuracy

Measures model performance on 
unseen data. Aim for high 
accuracy without overfitting.

from sklearn.metrics import 
confusion_matrix
predictions = 
model.predict(test_images)
pred_classes = 
np.argmax(predictions, 
axis=1)
conf_mat = 
confusion_matrix(test_labels, 
pred_classes)
    

2 Confusion Matrix

Shows prediction patterns across 
classes. Helps identify where 
model struggles.

3 Visualization
Plot accuracy/loss curves to 
detect overfitting. Compare 
training and validation metrics.


