
Building Neural Networks
for Image Classification
Learn how to harness the power of neural networks for image classification.
We'll explore CNN architecture and implement models using TensorFlow.

by S MM

What is Image Classification?
Security Systems
Face recognition software identifies individuals from security footage. Used in
airports, stadiums, and businesses.

Medical Diagnostics
AI systems detect abnormalities in medical images. Can identify tumors,
fractures, and other conditions.

Consumer Applications
Mobile apps identify plants, animals, landmarks, and products. Makes
information accessible instantly.

Convolutional Neural Networks (CNNs)

Convolutional Layers
Extract features using filters that scan
across the image. Detect edges,
textures, and patterns.

Pooling Layers
Reduce dimensions while preserving
important information. Makes
computation more efficient.

Fully Connected Layers
Combine features for final
classification. Connect all neurons
between layers.

Popular Image Datasets

MNIST

70,000 handwritten digits (0-9)

28×28 pixel grayscale images

Standard benchmark for beginners

CIFAR-10

60,000 color images in 10 classes

32×32 pixel RGB images

Includes animals, vehicles, and objects

Custom Datasets

Created for specific applications

Requires careful collection and labeling

Can use data augmentation to expand

TensorFlow Workflow: Load &
Preprocess

from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) =
mnist.load_data()

Import Data

train_images = train_images / 255.0
test_images = test_images / 255.0

Normalize Pixel Values

Scale pixel values to range [0,1] for better training performance.

train_images = train_images.reshape(-1, 28, 28, 1)
test_images = test_images.reshape(-1, 28, 28, 1)

Reshape for CNN Input

TensorFlow Workflow: Define & Train

model = Sequential([
 Conv2D(32, (3,3), activation='relu',
 input_shape=(28,28,1)),
 MaxPooling2D((2,2)),
 Conv2D(64, (3,3), activation='relu'),
 MaxPooling2D((2,2)),
 Flatten(),
 Dense(64, activation='relu'),
 Dense(10, activation='softmax')
])

Define Model

model.compile(
 optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy']
)

history = model.fit(
 train_images,
 train_labels,
 epochs=10,
 validation_data=(test_images, test_labels)
)

Compile & Train

TensorFlow Workflow: Evaluate

test_loss, test_acc =
model.evaluate(test_images,
test_labels)
print(f"Test accuracy:
{test_acc:.4f}")

1 Test Accuracy

Measures model performance on
unseen data. Aim for high
accuracy without overfitting.

from sklearn.metrics import
confusion_matrix
predictions =
model.predict(test_images)
pred_classes =
np.argmax(predictions,
axis=1)
conf_mat =
confusion_matrix(test_labels,
pred_classes)

2 Confusion Matrix

Shows prediction patterns across
classes. Helps identify where
model struggles.

3 Visualization
Plot accuracy/loss curves to
detect overfitting. Compare
training and validation metrics.

